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Abstract

We study the problem of learning a sparse linear regresgotorunder additional condi-
tions on the structure of its sparsity pattern. This probiemelevant in machine learning,
statistics and signal processing. It is well known that adinregression can benefit from
the knowledge that the underlying regression vector issgparhe combinatorial problem
of selecting the nonzero components of this vector can daxed” by regularizing the
squared error with a convex penalty function like thenorm. However, in many applica-
tions, additional conditions on the structure of the regjmsvector and its sparsity pattern
are available. By incorporating this information into tleaining method, may lead to a
significant decrease of the estimation error.

In this paper, we present a family of convex penalty funajowhich encode prior
knowledge on the structure of the vector formed by the albsolalues of the regression
coefficients. This family subsumes thenorm and is flexible enough to include different
models of sparsity patterns, which are of practical andrétesal importance. We establish
the basic properties of these penalty functions and disnrege examples where they can be
computed explicitly. Moreover, we present a convergennapation algorithm for solving
regularized least squares with these penalty functionsadtlical simulations highlight the
benefit of structured sparsity and the advantage offereduibyapproach over the Lasso
method and other related methods.
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1 Introduction

The problem of sparse estimation is becoming increasin@itapt in statistics, machine learn-
ing and signal processing. In its simplest form, this probt®nsists in estimating a regression
vectorS* € R” from a set of linear measurements R™, obtained from the model

y=Xp"+¢ (1.1)

where X is anm x n matrix, which may be fixed or randomly chosen gnd R™ is a vector
which results from the presence of noise.

An important rational for sparse estimation comes from theeovation that in many practi-
cal applications the number of parametelis much larger than the data size but the vector
B* is known to be sparse, that is, most of its components arel éguaro. Under these cir-
cumstances, it has been shown that regularization witl tm®rm, commonly referred to as
the Lasso method, provides an effective means to estimatanitherlying regression vector, see
for example|[3| 5, 14, 18] and references therein. Moreavbgs been shown, under certain
conditions, that this method can reliably select the spapsittern of5* [14], hence providing
a valuable tool for feature selection.

In this paper, we are interested in sparse estimation unlditi@nal conditions on the spar-
sity pattern of the vectas*. In other words, not only do we expect this vector to be splause
also that it isstructured sparsenamely certain configurations of its nonzero componergs ar
to be preferred to others. This problem arises is severdicapipns, ranging from functional
magnetic resonance imaging [7, 19], to scene recognitionsion [8], to multi-task learning
[1,113,/15] and to bioinformatics [17] — to mention but a few.

The prior knowledge that we consider in this paper is thatvéeor|5*|, whose compo-
nents are the absolute value of the corresponding compooént, should belong to some
prescribed convex subsatof the positive orthant. For certain choices/othis implies a con-
straint on the sparsity pattern as well. For example, thé\sefay include vectors with some
desired monotonicity constraints, or other constraintshen“shape” of the regression vector.
Unfortunately, the constraint thft*| € A is nonconvex and its implementation is computa-
tional challenging. To overcome this difficulty, we propasmily of penalty functions, which
are based on an extension of thenorm used by the Lasso method and involves the solution
of a smooth convex optimization problem. These penaltytfons incorporate the structured
sparsity constraints.

Precisely, we propose to estimdteas a solution of the convex optimization problem

min {[[ X5 — yll? + 20Q(3IA) : B € R"} (12)

where|| - || denotes the Euclidean normis a positive parameter and the penalty function takes

the form
Q(B|A) = inf 12<5—3+A>-A6A (1.3)
N 2 1EN, )\i A . .
As we shall see, a key property of the penalty function isitheltvays exceeds thg norm
of § unless|s| € A and it is strictly greater than th@ norm otherwise. This observation
suggests that the penalty function encourages the desitetised sparsity property.
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Our approach also suggests that the parameteontrols the degree of regularization on
the corresponding regression coefficignt The case that the sat consists of one poin is
instructive. In this case, the solution of the optimizafoblem [1.2) can be obtained explic-
itly as a solution to a Tikhonov regularization. It is impanmt to realize that this optimization
problem requires that all the components)ofre non-zero. However, the optimal solution,
which we call3()), can be shown to be defined even if some of the componentsiua zero.
Indeed, when some of the components of the vettg to zero on some sétC N,,, the same
components of()\) on this set go to zero as well. Moreover, the remaining coraptsof3(\)
on the complement of provide a vector which solves the optimization problemrietgd to
all vectors whose components drare zero. We will substantiate these observations in Sectio
6.

1.1 Previous work

There has been some recent research interest on strucpaesitys see (1,19, 11, 12, 20] and
references therein. Closest to our approach are penaltyoahebuilt around the idea of mixed
(1-f5 norms. In particular, the group Lasso method [20] assumegstifie components of the
underlying regression vectgr can be partitioned into prescribed groups, such that thigaes
tion of 5* to a group is equal to zero for most of the groups. This ideableas extended in
[12,/21] by considering the possibility that the groups tagrccording to certain hierarchical
or spatially related structures. A limitation of these noetti is that they can only handle spar-
sity patterns forming a single connected region. Our pdinview is different from theirs and
provides a means to designing more flexible penalty funstwinich maintain convexity whilst
modeling richer model structures. For example, we will dastate that our family of penalty
functions can model sparsity pattern forming multiple cected regions of coefficients.

1.2 Plan of the paper

The paper is organized in the following manner. In Sectibneestablish some important
properties of the penalty function. In Sectidn 3 we addrhsscase in which\ is a box. In
Sectiori 4 we derive the form of the penalty function corresiiiog to the wedge with increasing
coordinates and in Sectidn 5 we extends this analysis todke in which the constraint set
A is constructed from a directed graph. In Secfibn 6 we disassful duality relations and
in Section¥ we address the issue of solving the problem fiu®)erically by means of an
alternating minimization algorithm. Finally, in Sectibhv& provide numerical simulations
with this method, showing the advantage offered by our aggro

2 Penalty function

In this section, we provide some general comments on thdtgdnaction which we study in
this paper. To this end, we I&} _ be the open positive orthant, we I&f be the set of positive
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Figure 1: (a): Functiod'(-, ) for some values ok > 0; (b): Functionl’(j, -) for some values
of 5 € R.

integers up tor and define the functiohi : R” x R | — R by the formula

I'(B,)) = 1 > (5—’2+A-)
) - 2 ' )\2 N BN
€Ny,
We let A be a nonempty subset &} . and for every3 ¢ R", we define the penalty function
Q:R" > Ratgas
Q(BIA) = inf{T'(B,\) : A € A}. (2.1)
Note thafl" is convex on its domain because each of its summands aras&eanvex functions.
Hence, when the sétis convex it follows thaf)(-|A) is a convex function anf(1.2) is a convex
optimization problem.

An essential idea behind our construction of this functisrthat, for every\ € R, ., the
quadratic functiori’(-, \) provides a smooth approximation [t@| from above, which is exact
at 5 = +\. We indicate this graphically in Figufé 1-a. This fact fel®immediately by the
arithmetic-geometric inequality, which states, for every > 0 that(a + b)/2 > Vab.

A special case of the formulation (1.2) with= R”} _ is the Lasso method, which is defined
to be a solution of the optimization problem

min { ||y — X8]1” + 2p||B||, : 8 € R"}

where the/;-norm of the vectod = (5; : i € N,,) € R" is defined ag|g|l; = >y, 15l
Indeed, using again the arithmetic-geometric inequatitipliows that Q(5|R%,) = ||5]1.
Moreover, if for everyi € N,, 5; # 0, then the infimum is attained fox; = |5;|. This im-
portant special case motivated us to consider the genethboheescribed above. The utility
of (2.1) is that upon inserting it int@_(1.2) results in anioptation problem ovei andj with
a continuously differentiable objective function. Henwees have succeeded in expressing a
nondifferentiable convex objective function by one whiskcontinuously differentiable on its
domain.

For any real numbers < b, we define the parallelepipdd, b]” = {z : = = (z; : i €
Np),a <z; <b, i € N,}.



Definition 2.1. We say that the set is admissible if it is convex and, for all b € R with
0 < a <b,theset\,; := [a,b]” N A is a nonempty, compact subset of the interioAof

Proposition 2.1.1f 3 € (R\{0})" andA is an admissible subset®f; , , then the infimum above
is uniquely achieved at a poin3) € A and the mapping — \(3) is continuous. Moreover,
the functionQ2(-|A) is continuously differentiable and its partial derivatévare given, for any
i € N, by the formula

oUBIN) _ B

B NG (2:2)

We postpone the proof of this proposition to the appendix. N that, sincé)(-|A) is
continuous, we may compute it at a vectgrsome of whose the components are zero, as a
limiting process. Moreover, at such a vector the funcfidfA) is in general not differentiable,
for example consider the cas&3|R’; ) = ||5]:.

The next proposition provides a justification of the penéltyction as a means to incorpo-
rate structured sparsity and establish circumstances liartwthe penalty function is a norm.
To state our result, we denote Bythe closure of the sef.

Proposition 2.2. For everys € R, it holds that|| 3], < ©(38|A) and the equality holdg and
only if |8] := (]3| : i € N,,) € A. Moreover, ifA is a nonempty convex cone then the function
Q(:|A) is a norm and we have th&(5|A) < w||B]]1, wherew := max{Q(ex|A) : k € N} and

{ex : k € N, } is the canonical basis d&".

Proof. By the arithmetic-geometric inequality we have that|; < I'(5, \), proving the first
assertion. Ifi3| € A, there exists a sequenéa” : k € N} in A, such thatim,,_,., \* = |3].
SinceQ(B|A) < T'(B, \¥) it readily follows thatQ(3|A) < ||3]|.. Conversely, ifi3] € A, then
there is a sequende\* : k € N} in A, suchvy(8,\*) < ||31]| + 1/k. This inequality implies
that some subsequence of this sequence converges o & Using the arithmetic-geometric
we conclude thah = |3| and the result follows. To prove the second part, observeifthia
is a nonempty convex cone, namely, for any A andt > 0 it holds thatt\ € A, we have
that Q) is positive homogeneous. Indeed, making the change ofblarld = \/|t| we see
that Q(tB|A) = |t|Q(S|A). Moreover, the above inequalit@(3|A) > |51, implies that if
Q(B|A) = 0thens = 0. The proof of the triangle inequality follows from the honsogity and
convexity ofQ2, namelyQ(a + B|A) = 2Q ((a + 8)/2|A) < Q(a|A) + Q(B|A).

Finally, note that2(5|A) < wl|A|; if and only if w = max{Q(B|A) : |||ls = 1}. Sincef)
is convex the maximum above is achieved at an extreme pothedf unit ball. [ |

This proposition indicates that the functioi-|A) penalizes less vectorswhich have the
property that 3| € A, thereby encouraging structured sparsity. Specificatly,@ermutation of
the coordinates of a vectar with the above property will incur in the same or a larger ealu
of the penalty function. Moreover, for certain choices @& etA, some of which we describe
below, the penalty function will encourage vectors which aoly are sparse but also have
sparsity patternsly s, -o; : i € N,,}) € A, wherely,, denotes the indicator function. Note also
that, the alternative formulation in which the constraitite A is added directly as a constraint
to the Lasso problem is not convex.



Next, we note that a normalized version of the group Lassalpe[R0] is included in our
setting as a special case.{lf, : ¢ € N;}, k € N,, form a partition of the index sé¥,,, the
corresponding group Lasso penalty is defined as

Qan(B8) = Y VIl 1842, (2.3)

£eNg

where, for every/ C N,,, we use the notatiof; = (5; : j € J). Itis an easy matter to verify
thatQgr, = ( |A) for A = {)\ A E R_H_,)\' =0y 7€ Jy, L €Ny, 6y > 0}

The next proposition presents a useful construction whialy be applied to generate new
penalty functions from available ones. It is obtained by posing a se® C R%, with a
linear transformation, modeling the sum of the componehts wector, across the elements
of a prescribed partitio® = {P, : ¢ € N;} of N,,. To describe our result we introduce
the group average mapl, : R® — R* induced byP. It is defined, for eact8 € R", as

Ap(B) = (1Bl : € € Ny).
Proposition 2.3.If © C R _, 3 € R™ and P is a partition ofN,, then

Q(B|A5'(©)) = UAp(B)|O).

Proof. The idea of the proof depends on two basic observations. idteifies the set theoretic

formula
-1 @) _ U A}l(ﬁ)
€0
From this decomposition we obtain that
Q(BIAZ(©)) = inf {inf {T'(8,A) : A € A" ()} : 0 € ©}. (2.4)

Next, we writed = (6, : ¢ € N;) € © and decompose the inner infimum as the sum
1 33 .
Zlnf 52 )\—+)\J IZ)\jzeg,)\j>0,j€e]g .
LEN}, €T, J jE€Jp

Now, the second essential step in the proof evaluates thmearnfi the second sum by Cauchy-
Schwarz’s inequality to obtain that

inf {T(BIA) : A € A1 ()} = Z (”5”@”1 ) .
LeN
We now substitute this formula into the right hand side ofagiun (2.4) to finish the proof. m

When the sef\ is a nonempty convex cone, to emphasize that the fun€tigm ) is a norm
we denoted it by| - ||5. We end this section with the identification of the dual norim| e|| s
whenA is a nonempty convex cone, which is defined as

18]l = max {87u: u € R”, flully = 1}
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Proposition 2.4. If A is a nonempty convex cone, then there holds the equation

Z‘GN )‘Zﬁzz
[B][ea =sup S 4| == AEA .
ZieNn )‘i

Proof. By definition, ¢ = ||3||.. is the smallest constagt such that, for everj\ € A and

u € R™, it holds that
hd Z ( ) — B8"u > 0.

ZGN
Minimizing the left hand side of this inequality far € R" yields the equivalent inequality

2
2 S ZieNn Aif3;

(p = .
ZiENn )\i
Since this inequality holds for every € A, the result follows by taking the supremum of the
right hand side of the above inequality over this set. [ |

The formula for the dual norm suggests that we introducegh& s- {\ : X € A, > ien, Ni =
1}. With this notation we see that the dual norm becomes

5&Awp{/§:&ﬁ:Aeﬂ}.
1€Ny,

Moreover, a direct computation yields an alternate formtka original norm given by the
equation
wwﬂ%Jzﬁxe@
1ENp,

We proceed to discuss some examples of the\setR’; , which may be used in the design of
the penalty functiof2(-|A).

The first example, which is present in this section, corradpdo the prior knowledge that
the magnitude of the components of the regression vectaldibe in some prescribed inter-
vals. We choose = (a; : i € N,), b= (b; : 1 € N,)) € R", 0 < a; < b; and define the
corresponding box aB[a,b] := {(\; : i € N,)) : \; € [a;,b], ¢ € N, }. The theorem below
establishes the form of the box penalty. To state our resdtdefine, for every € R, the
function(t), = max(0, t).

Theorem 3.1.We have that

%%MbH%+Z(

€Ny,

3 Box penalty

IR + g 13— 02 ).

Moreover, the components of the vecp) := argmin{I'(5,\) : A € Bla,b]} are given by
the equations\;(3) = |5i| + (a; — |Bi])+ — (|18i] = D)+, i € N,,.
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Proof. SinceQ(5|Bla,b]) = >y, Q(Bil[as, bi]) it suffices to establish the result in the case
n = 1. We shall show that if., b, 5 € R, a < bthen

B0, 1) = 161+ 5-(a — 1813 + 55151 ~ D)% 31)

Since both sides of the above equation are continuous aurectf 5 it suffices to prove this
equation fors € R\{0}. In this case, the functioh(/, -) is strictly convex, and so, has a
unique minimum inR, . at A\ = |3|, see also Figurel 1-b. Moreover,|if| < a the minimum
occurs at\ = a, whereas ifi 3| > b, it occurs at\ = b. This establishes the formula faf3).
Consequently, we have that

181, if | 5] € la, 0]
QB = 3 (£ +a), 8l <a
L& +b), i8>0
Equation[(3.1l) now follows by a direct computation. [ |

We also refer to/ [10, 16] for related penalty functions. Nibtat the function in equation
(3.1) is a concatenation of two quadratic functions, cotetttogether with a linear function.
Thus, the box penalty will favor sparsity only far= 0.

4 Wedge penalty

In this section, we consider the case that the coordinatéseofector\ € A are ordered in a
nonincreasing fashion. As we shall see, the correspondnglfy function favors regression
vectors which are likewise nonincreasing.

We define the wedge

W:{)\I)\:()\iIiENn)GR:L__,’_,)\Z‘Z)\Z'_,_l, iENn_l}.

Our next result describes the form of the penéltin this case. To explain this result we require
some preparation. We say that a partitign= {J, : ¢ € N, } of N, is contiguousf for all

i € Jo,j € Jop1, £ € Ny, it holds thati < j. For example, il = 3, partitions{{1, 2}, {3}}
and{{1}, {2}, {3}} are contiguous but{1, 3}, {2} } is not.

Definition 4.1. Given any two disjoint subsets X' C N,, we define the region iR"

LI
I K]

Qirx = {5 1B eR, (4.1)

Note that the boundary of this region is determined by the get of a homogeneous polynomial
of degree two. We also need the following construction.



J ={1} J ={2,3,4,5} J ={6, 7}

e )

Figure 2: Partition ofs = (0.7269, —0.3034, 0.2939, —0.7873,0.8884, —1.1471, —1.0689).

Definition 4.2. For every subset C N,,_; we setk = |S| + 1 and label the elements 6fin

increasing order a$y = {j, : £ € N;_;}. We associate with the subsga contiguous partition
of N,,, given by7(S) = {J; : ¢ € N;}, where we defind, := [j,_1 + 1,j/] NN, ¢ € Ny, and

setj, = 0 andj, = n.

Figurel2 illustrates an example of a contiguous partiti@mglwith the set7(.5).

A subsetS of N,,_; also induces two regions iR™ which play a central role in the identi-
fication of the wedge penalty. First, we describe the regibicv“crosses over” the induced
partition 7 (.S). This is defined to be the set

Os = ({Qussr 1 L E Nt} (4.2)

In other words,5 € Oy if the average of the square of its components within eaclomeg
Jy strictly decreases withh. The next region which is essential in our analysis is thay'st
within” region, induced by the partitiog/(S). To identify this region we use the notation
Jog:=1{7:7 € Ji,j <q} andis defined by the equation

Is = (@, 10 € Jesl € N} (4.3)

where( denotes the closure of the @t In other words, all vectorg within this region have
the property that, for every set € J7(S), the average of the square of a first segment of
components off within this set is not greater than the average okeiVe note that ifS is the
empty set the above notation should be interpreted@as R™ and

Is = ﬂ{@Nn,Nq tq € N}
From the cross-over and stay-within sets we define the region
PS = OS N ]S.

Alternatively, we shall describe below the g&f in terms of two vectors induced by a vector
B € R™ and the set C N,,_;. These vectors play the role of the Lagrange multiplier ded t
minimizer \ for the wedge penalty in the theorem below.



Definition 4.3. For every vectops € (R\{0})" and every subset C N,,_; we let7(S) be the
induced contiguous partition of,, and define two vector§ 3, 5) € R andd(, S) € R,

by

0, if ¢ € SU{0,n},
G5, 5) = 1817, |12
|J€,Q‘ - |J€‘ B Z’q||227 if qc Jfag S Nk
[Jpll2
and
64(8,8) = HBWHQ; q € Jy,l €Ny (4.4)

VI

Note that the components &f5, S) are constant on each sét ¢ € N;.
Lemma 4.1. For everys € (R\{0})” andS C N;_; we have that

(@) 8 € Psifandonlyif{(3,S) > 0ando(s,S) € int(W);

(b) Ifo(B,51) =4(8,5:) ands € Os, N Og, thenS; = 5.

Proof. The first assertion follows directly from the definition okthequisite quantities. The
proof of the second assertion is a direct consequence ofatlietiat the vectod(5,S) is a
constant on any element of the partitigiS) and strictly decreasing from one element to the
next in that partition. [ |

For the theorem below we introduce, for evéhye N,,_; the sets
Us :== Ps N (R\{0})".

We shall establishes not only that the collection of géts- {Us : S C N,,_; } form apartition
of (R\{0})", that is, their union igR\{0})" and two distinct elements @f are disjoint, but
also explicitly determine the wedge penalty on each eleroifit

Theorem 4.1. The collection of seld := {Us : S C N,,_; } form a partition of(R\{0})". For
eachg € (R\{0})" there is a uniqu& C N,,_; such thats € Us, and

1Bllw =Y~ V1 ell B,z (4.5)

£eNg

wherek = | S|+ 1. Moreover, the components of the vect@f) := argmin{I['(5,\) : A € W}
are given by the equations(3) = 1, j € Ji, £ € Ny, where

1821l
vaea

Proof. First, let us observe that there are- 1 inequality constraints defining/. It readily
follows that all vectors in this constraint set aegular, in the sense of optimization theory, see
[2, p. 279]. Hence, we can appeal to [2, Prop. 3.3.4, p. 316Raod. 3.3.6, p. 322], which

(4.6)



state that\ € R’} is a solution to the minimum problem determined by the wedgeafty, if
and only if there exists a vectar= («; : ¢ € N,,_;) with nonnegative components such that

e .
)\2+1+O‘J 1—a; =0, jeN,, 4.7)
where we sety, = «,, = 0. Furthermore, the following complementary slackness donh
hold true

Oéj()\j+1 - )\3) - 07 ,] € Nn—l- (48)

To unravel these equations, we Bt:= {j + A\j > Nj+1,J € N,_1}, which is the subset of
indexes corresponding to the constraints that are not tigtienkt > 2, we express this set in
the form{j, : £ € Ny_,} wherek = |S| + 1. As explained in Definitioi 412, the sétinduces
the partition7 (S S) = {Jy : £ € N} of N,,. Whenk = 1 our notation should be interpreted
to mean that5 is empty and the partitioy (S ) S) consists only ofN,,. In this case, it is easy to
solve equations (4.7) and_(4.8). In fact, all componentfiefiector\ have a common value,
sayu > 0, and by summing both sides of equatibn(4.7) gverN,, we obtain that

o 18I

n

Moreover, summing both sides of the same equation p¥elN, we obtain that

ZJZI\;q B +q
and, sincey, > 0 we conclude that c Ig = Ps.

We now consider the case thiat> 2. Hence, the vectok has equal components on each
subset/,, which we denote by, ¢ € N;_;. The definition of the seb implies that the
sequencd y, : ¢ € N} is strictly decreasing and equatign (4.8) implies that= 0, for every
j € S. Summing both sides of equatidn {(4.7) oyet .J, we obtain that

Qy = —

_ LS B =0 (4.9)

e,

from which equation[(416) follows. Since the are strictly decreasing, we conclude tivat
Og. Moreover, choosing € J, and summing both sides of equations{4.7) over J, , we
obtain that
o<a = MnalB
l
which implies thats € QJ e . Since this holds for every € J, and? € N, we conclude that
B € I¢ and therefore, it follows that € Us.

In summary, we have shown that= ¢(, S), A = §(8, S), andj € Uy. In particular, this
implies that the collection of set$ covers(R\{0})". Next, we show that the elementsidfare
disjoint. To this end, we observe that, the computation rilesd above can beeversed That
is to say, conversely fany S C N,,_; and € Ug we conclude thad(s, S) and¢ (3, S) solve
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(b) (d)

Figure 3: Unit ball of different penalty functions: (a) WeslgenaltyQ)(-|17); (b) hierarchi-
cal group Lasso; (c) group Lasso with groupsl, 2}, {3}}; (d) group Lasso with groups
{{1}7 {27 3}}! (e) the penaltﬁ(‘w2>

the equationd (417) and (4.8). Since the wedge penaltyitamis strictly convexwe know that
equations[(417) and (4.8) have a unique solution. Now,df Us, N Us, then it must follow that
5(8,S1) = 6(B, S2). Consequently, by part (b) in Lemrna#4.1 we conclude fhat Ss. [ |

Note that the sef and the associated partitigfi appearing in the theorem is identified
by examining the optimality conditions of the optimizatiproblem [1.8) forA = . There
are2"~! possible partitions. Thus, for a givehe (R\{0})", determining the corresponding
partition is a challenging problem. We explain how to do thiSectiorl 7.

An interesting property of the Wedge penalty, which is imadécl by Theorern 4.1, is that it
has the form of a group Lasso penalty as in equatfion (2.3l gribups not fixed-priori but
depending on the location of the vector The groups are the elements of the partitiorand
are identified by certain convex constraints on the vegtdror example, for, = 2 we obtain
thatQ(B|W) = || 8|1 if |81] > |B2] andQ(B|W) = +/2||]|. otherwise. For. = 3, we have that

(18I, if [B1] > |Ba| > |Bs| J = {{1},{2}, {31}
V2B + B + |Bs], it |81 < |8 and 22 > 52 7 — {{1,2},{3}}
QBIW) =
81| + /2053 + 53), if |Ba] < |Bs| and 7 > 2% 7 = {{1},{2,3}}

| V/3(B7 + B3+ B2), otherwise J =1{{1,2,3}}

where we have also displayed the partitinnvolved in each case. We also present a graphical
representation of the corresponding unit ball in Figure Bex comparison we also graphically
display the unit ball for the hierarchical group Lasso witbups{1, 2, 3}, {2, 3}, {3} and two
group Lasso in Figuriel 3-b,c,d, respectively.

The wedge may equivalently be expressed as the constrathtndifference vectap® (\) :=
(Aj+1 —Aj 1 j € N,_;) is less than or equal to zero. This alternative interpretegiiggests the
k-th order difference operator, which is given by the formula

Dk()\) = ()\H_k + Z(—l)é (?) )\j_,_k_g 1] € Nn—k)

€N
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and the correspondingth wedge
Wk.={\: XeR%,, D¥() >0}. (4.10)

The associated penalfy(-|1W*) encourages vectors whose sparsity pattern is concentrated
at mostk different contiguous regions. Note thidf! is not the wedgéV considered earlier.
Moreover, the2-wedge includes vectors which have a convex “profile” and sehsparsity
pattern is concentrated either on the first elements of th®keon the last, or on both.

5 Graph penalty

In this section we present an extension of the wedge set vidiaspired by previous work on
the group Lasso estimator with hierarchically overlapmgingups|[21]. It models vectors whose
magnitude is ordered according to a graphical structure.

Let G = (V, E) be a directed graph, whefié is the set ofn vertices in the graph and
E CV x Visthe edge set, whose cardinality is denotedrbyif (v, w) € E we say that there
is a directed edge from vertexto vertexw. The graph is identified by thes x n incidence
matrix, which we define as

1, fe=(ww) e E,weV
Acp=4q —1, ife=(w,v)e E,weV

0, otherwise.

We consider the penalty. ||, for the convex cond = {\: A € R, A\ > 0} and assume,
from now on, that> is acyclic (DAG), that is( has no directed loops. In particular, this implies
that, if (v,w) € E then(w,v) ¢ E. The wedge penalty described above is a special case of
the graph penalty corresponding to a line graph. Let us nsaudis some aspects of the graph
penalty for an arbitrary DAG. As we shall see, our remarkd teaan explicit form of the graph
penalty whenz is a tree.

If (v,w) € E we say that vertex is a child of vertexo andv is a parent ofv. For every
vertexv € V, we letC(v) and P(v) be the set of children and parentsipfespectively. When
G is a tree,P(v) is the empty set i) is the root node and otherwigg(v) consists of only one
element, the parent ef which we denote by(v).

Let D(v) be the set of descendantsfthat is, the set of vertices which are connected
to v by a directed path starting i, and letA(v) be the set of ancestors of that is, the set
of vertices from which a directed path leadsitoWe use the convention thate D(v) and
v ¢ Av).

Every connected subsit C V induces a subgraph ¢f which is also a DAG. If; andV,
are disjoint connected subsetslof we say that they are connected if there is at least one edge
connecting a pair of vertices iri andVs, in either one or the other direction. Moreover, we say
thatV; is belowV; — written V; || V7, — if Vi andV; are connected and every edge connecting
them departs from a node bf.

12



Definition 5.1. Let G be a DAG. We say that’ C F is a cut ofG if it induces a partition
V(C) = {V, : £ € Ni} of the vertex set” such that(v, w) € C if and only if vertices» andw
belong to two different elements of the partition.

In other words, a cut separates a connected graph in two o nowmected components
such that every pair of vertices corresponding to a discttiedezdge, that is an element©f
are in two different components. We also denoteClogr) the set of cuts ofr, and by D,(v)
the set of descendants ofwithin setl/, for everyv € V, and/ € N;. Figurel3 illustrates an
example of a partition of a tree.

Next, for everyC' € C(G), we define the regions iR" by the equations

Oc=({Quww, : Vi.Va €V(C), V2 I Vi} (5.1)

and _
Ie = ({@pywyvi : L € Ni,v € Vi) (5.2)

These sets are the graph equivalent of the sets defined biyat@.2) and (4]3) in the special
case of the wedge penalty in Sectidn 4. We alsd%et O N 1.
Moreover, for everyC' € C(G), we define the sets

Uc == Po [ |(R\{0})"

As of yet, we cannot extend Theoréml4.1 to the case of an anpiDAG. However, we can
accomplish this whery is a tree.

Lemma5.1. LetG = (V, E) be a tree, letd be associated incidence matrix and tet (z,
v € V) € R™. The following facts are equivalent:

(a) Foreveryv € V it holds that
Z zu > 0.

ueD(v)

(b) Thelinear syster™a = —z admits a non-negative solution far= (o, : e € E) € R™.

Proof. The incident matrix of a tree has the property that, for evegyV ande € F,
Z Aeu = _56,(;7(11),11) (53)
u€D(v

where, for every, e’ € E, 6. = 1if e = ¢ and zero otherwise. The the linear system in (b)
can be written componentwise as
Z Apute = —2,,.

ecE

Summing both sides of this equation over D(v) and using equatiot_(5.3), we obtain the
equivalent equations
A(p(v),v) Z Zy-

ueD(v)
The result follows. ]
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Definition 5.2. Let G = (V, E) be a DAG. For every vectof € (R\{0})" and every cut
C e C(G)weletV(C) ={V,: L € Ni}, k € N, be the partition of” induced by, and define
two vectors, (3, C) € R and§(3,C) € R, . The components gf 3, C) are given as

0, ifeeC,

Ce(B,C) =

Bip, w3 .
|Vg|H ||§f;||)g”2 — |De(w)], ife=(u,v),u € Vyv & Dy(u), £ € Ny

whereas the componentsafs, C') are given by

||B|Vz||2
VIVl
Note that the notation we adopt in this definition differsnfréhat used in the case of line

graph, given in Definitioh 4]13. However, Definitibn b.2 leads more appropriate presentation
of our results for a tree.

0,(5,C) = veVy, LeN,. (5.4)

Proposition 5.1. Let G = (V, E) be a tree andA the associated incidence matrix. For every
g € (R\{0})™ and every cut’ € C(G) we have that

(@) g € Poifand only if ((B,C) > 0, Ad(B,C) > 0 andd,(5,C) > 6,(8,C), for all
veVi,weV,, (v,w) e E,V,, Vo e V(O);

(b) Ifo(B,C1) =0(8,Cs) and € O¢, N O¢, thenC; = Cs.

Proof. We immediately see that € O if and only if Ad6(3,C) > 0 andé, (8, C) > 6,(5,C)
forallv € Vi,w € V3, (v,w) € E, V1,V, € V(C). Moreover, by applying Lemma$5.1 on
each element; of the partition induced by’ and choosing = ( Vg\% —1:veV,),we
conclude that (g8, C') > 0 if and only if 5 € 1. This proves the first assertion.

The proof of the second assertion is a direct consequente ddtt that the vectar(5, C')
is a constant on any element of the partitidfC') and strictly decreasing from one element to
the next in that partition. [ |

Theorem 5.1.LetG = (V, E) be a tree. The collection of sdis:= {Us : C € C(G)} form
a partition of (R\{0})". Moreover, for every € (R\{0})" there is a uniqu&’ € C(G) such

that
1Blac = D> VIVilllBwll (5.5)
Veev(C)

and the vecton(5) = (A, (5) : v € V') has components given By(5) = ue, v € Vi, £ € Ny,
where

p= [~ 3, (5.6)

14



Proof. The proof of this theorem proceeds in a fashion similar to tid heoreni4.11. In this
regard, LemmaJ5ll is crucial. By KKT theory (see e.g. [2, Teews 3.3.4,3.3.7])) is an
optimal solution of the graph penalty if and only if therestgiv > 0 such that, for every €

__+1_Zae ev:

ecE
and the following complementary conditions hold true
o) (Aw — Ay) =0, v € Viw e C(v). (5.7)
We rewrite the first equation as
2
A (p(v),v) Z A(pw) = _v -1 (58)

weC (v U

Now, if A € Ag solves equation§ (5.7) adI(BB), then it induces &kut £ and a correspond-
ing partitionV(C') = {V; : ¢ € Ny} of V such that\, = p, for everyv € V,. Thatis,\, = A,
for everyv, w € V,, £ € N, anda, = 0 for everye € C. Therefore, summing equations (5.8)
for v € V, we get that

B2

o = -
VIVl
Moreover, sincew, > u,, if V, || V, we see that € O¢. Next, for everyl € N, andu € V, we
sum both sides of equation (5.8) fer= D,(u) to obtain that

_1Bpwlls -
Yol = T g T [ De(u)]- (5.9)
We see that € I and conclude that € Ue.

In summary we have shown that the collection of gétsover(R\{0})". Next, we show
that the elements dff are disjoint. To this end, we observe that, the computatestdbed
above can beeversed That is to say, conversely fany partitionC = {3, ..., V,} of V and
p € Uc we conclude by Propositidn 5.1 that the vect®s, C') and( (3, C) solves the KKT
optimality conditions. Since this solution is uniquesife Uq, N Ug, then it must follow that
d(8,Ch) = 6(8,Cy), which implies that”; = Cs. |

Theorem§ 4]1 arld 5.1 fall into the category of a/s&f R™ chosen in the form of a polyhe-
dral cone, that is
A={ : X eR" A\ >0}
where A is anm x n matrix. Furthermore, in the line graph of Theoreml 4.1 and &
extension in Theorern 3.1 the matrik only has elements which arel,1 or 0. These two
examples that we considered led to explicit descriptiornefriorm|| - ||,. However, there are
seemingly simple cases of a matrixof this type where the explicit computation of the norm
|| - ||» seem formidable, if not impossible. For examplenit= 2, n = 4 and
-1 -1 1 0
A= [ 0 -1 -1 1}
we are led by KKT to a system of equations that, in the case ofastive constraints, that is,
A) = 0, are the common zeros of tviourth orderpolynomials in the vectok € R2.
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6 Duality

In this section, we comment on the utility of the class of pignfanctions considered in this

paper, which is fundamentally based on their construct®ooastrained infimum of quadratic
functions. To emphasize this point both theoretically aoohputationally, we discuss the con-
version of the regularization variational problem oges R™, namely

E(A) =inf{E(B,)\): BER" A€ A} (6.1)

where

into a variational problem ovex € A.
To explain what we have in mind, we introduce the followindmiéon.

Definition 6.1. For every\ € R", we define the vectgi(\) € R" as
B(A) = diag(A)M(A) Xy
where M ()\) := (diag(\) XX + pI)~1.
Note that3(\) = argmin{ E(53, \) : 8 € R"}.

Theorem 6.1.For p > 0, y € R™, anym x n matrix X and any nonempty convex setwve
have that

£(A) = min { py” (Xdiag(\)X ™ + pI) "'y + ptr(diag(\)) : A € AN Ri} (6.2)

Moreover, if\ is a solution to this problem, thef(\) is a solution to problen(6.1).

Proof. We substitute the formula f&2(/5|A) into the right hand side of equatidn (5.1) to obtain
that
EN)=inf {H(\): X € A} (6.3)

where we define
H\) =min{E(B,\): B € R"}.

A straightforward computation confirms that
H(\) = py" (Xdiag(\) X + pI) "y + ptr(diag())).

Since H(\) > ptr(diag()\)), we conclude that any minimizing sequence for the optirnonat
problem on the right hand side of equatién [6.3) must havebaesquence which converges.
These remarks confirm equatign (6.2).

We now prove the second claim. Fbie R} | a direct computation confirms that

Ly X M) diag(0) M) X Ty + tr(diag(\))

D(BOA) = 5
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Note that the right hand side of this equation provides aioaotis extension of the left hand
side toA € R"}. For notational simplicity, we still use the left hand sidelenote thigontinuous
extension

By a limiting argument, we conclude, for evexyc A, that

QBAN)IA) <T(B(A), A). (6.4)

We are now ready to complete the proof of the theorem ALt a solution for the optimization
problem [6.2). By definition, it holds, for any € R” and\ € A, that

ly = XBOVIP +2o0(B(X), ) = H(X) < H(QA) < [ly — XB||* + 2pL(8, N).
Combining this inequality with inequality (8.4) evaluatath = )\, we conclude that
ly = XBOV|* +202BN)[A) < ly — XB]1* +2pL'(8, A)
from which the result follows. [ |

An important consequence of the above theorem is a methoddaafisolution3 to the
optimization problem{6]1) from a solution to the optimipatproblem [6.R). We illustrate this
idea in the case that = 1.

Corollary 6.1. It holds that

2 —
min {[|8 — y|I3 + 2pQ(BIA) : B € R"} :pmin{ )\‘yjrij)\i:)\EA}. (6.5)
€N, '

Moreover, if\ is a solution of the right optimization problem then the vegt(\) = (5;(\) :
i € N,), defined as

Bih) = (6.6)

is a solution of the right problem.

We further discuss two choices of the gein which we are able to solve problein (6.5)
analytically. The first case we considers= R’ |, which corresponds to the Lasso penalty. It
is an easy matter to see that= (|y| — p), and the corresponding regression vector is obtained
by the well-known “soft thresolding” formul&()\) = (|y| — p).sign(y). The second case is
the Wedge penalty. We find that the solution of the optimarapiroblem in the right hand side
of equation[(&5) is\ = (A(y) — p)., whereX(y) is given in Theoreni 4l1. Finally, we note
that Corollary 6.1l and the example following it extend to tiase thafX " X = I by replacing
throughout the vectay by the vectorX "y. In the statistical literature this setting is referred to
as orthogonal design.
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7 Optimization method

In this section, we address the issue of implementing thrailegmethod[(1.J2) numerically.

Since the penalty functiof(-|A) is constructed as the infimum of a family of quadratic
regularizers, the optimization problein ([1.2) reduces tgrauaneous minimization over the
vectorsg and . For a fixed\ € A, the minimum overd € R"™ is a standard Tikhonov
regularization and can be solved directly in terms of a matwersion. For a fixed3, the
minimization over\ € A requires computing the penalty functidn (1.3). These alagiems
naturally suggests an alternating minimization algorithvhich has already been considered
in special cases in[1]. To describe our algorithm we cheose0 and introduce the mapping
¢ : R" — R" , whosei-th coordinate at € R" is given by

¢5(8) =/ 5; +e.

For5 € (R\{0})", we also let\(5) = argmin{I'(5, A) : A € A}.
The alternating minimization algorithm is defined as followchoose )\, € A and, for
k € N, define the iterates

gr o= B (7.1)
A= A(@(8Y). (7.2)
The following theorem establishes convergence of thisrdlgo.

Theorem 7.1. If the setA is admissible in the sense of Definition]2.1, then the itereti{7.1)—
(7.2) converges to a vectot(c) such that

7(e) = argmin {|ly — X3 + 20Q(¢*(8)|A) : B € R"}.

Moreover, any convergent subsequence of the seqt{e/r(cﬁ : £ € N} converges to a solution
of the optimization problerff.2).

Proof. We divide the proof into several steps. To this end, we define

E(B,)) = |ly — XB|* + 2pT(¢°(B), \)

and note that(\) = argmin{ E.(a, A) : @« € R"}.
Step 1.We define two sequence, = E.(8%, \¥~1) andy, = E.(5*, \¥) and observe, for
anyk > 2, that
v < Op < vy (7.3)

These inequalities follow directly from the definition okthlternating algorithm, see equations

(71) and[(Z.R).
Step 2.We define the compact s&t= {5 : 5 € R", ||| < 6,}. From the first inequality

in Proposition 2.2 and inequality (7.3) we conclude, forrgvec N, that3* € B.
Step 3.We define the functiop : R — Rat5 € R" as

9(B) = min {E(a, A(¢°(8))) : a € R"}.
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We claim thaty is continuous orB. In fact, there exists a constaat> 0 such that, for every
7',~? € B, it holds that

l9(+") = 9] < KA (7)) = M (7)) - (7.4)

The essential ingredient in the proof of this inequalityhis tact that there exists constarand
b such that, for all3 € B, A\(¢¢(3)) € [a,b]". This follows from the inequalities developed in
the proof of Proposition 2,1.

Step 4By step 2, there exists a subsequefié& : ¢ € N} which converges t¢ € B and,
forall 5 € R* and\ € A, it holds that

E(BN@°(5)) < BB, M6°(8))),  Be(B, A(¢(5))) < Ee(B, N (7.5)
Indeed, from step 1 we conclude that there exists R, , such that

lim 6, = hm v = 1.
k—o0

Since, by Proposition 2.1(3) is continuous fors € (R\{0})", we obtain that
Tim X = A(6°(5)).
By the definition of the alternating algorithm, we have, fbriae R™ and\ € A, that
Ori1 = BB N < E(B,NF), v = E(B5,\F) < E(B%,\).

From this inequality we obtain, passing to limit, inequabt(7.5).

Step 5.The vector(3, \(¢¢(3)) is a stationary point. Indeed, sindeis admissible, by step
3, M(¢°(B) € int(A). Therefore, sincé, is continuously differentiable this claim follows from
step 4.

Step 6. The alternating algorithm converges. This claim followsnfr the fact thatZ,
is strictly convex. HenceFE, has a unique global minimum iR™ x A, which in virtue of
inequalities[(Zb) is attained &8, A(¢<(5))).

The last claim in the theorem follows from the fact that the{sge) : ¢ > 0} is bounded
and the functiom\(3) is continuous. |

The most challenging step in the alternating algorithm ésgbmputation of the vector”.
Fortunately, ifA is a second order cone, problem {1.3) defining the penalgtifom(-|A) may
be reformulated as a second order cone program (SOCP) gs4é]eTo see this, we introduce
an additional variable € R™ and note that

5|A mln{Zt —|—)\ 2ﬁi,ti—)\i)”2Sti—f—)\i,tizo,’iGNn,)\GA}.
1ENy,
In particular, the examples discussed in Sectldns 4 andebset\ is formed by linear con-
straints and, so, problern (1.3) is an SOCP. We may then udalaeatool-boxes to compute
the solution of this problem. However, in special cases tdmputation of the penalty function
may be significantly facilitated by using available analgtiformulas. Here, for simplicity we
describe how to do this in the case of the wedge penalty. Foptirpose we say that a vector
B € R is admissible if, for every: € N,,, it holds that]| B, [|2/Vk < ||8]l2/v/7-
The proof of the next lemma is straightforward and we do nabbetate on the details.

19



Initialization: k£« 0
Input: 5 € R™ Output: Jy,...,J;
for t =1tondo

Jpr1 < {t};
k<« k+1
while % > 1 and 1815, 112 < 1817, ll2
\/‘kal‘ - \/m
Jk—l < Jk:—l U Jk
k+—Fk—1
end

end

Figure 4: Iterative algorithm to compute the wedge penalty

Lemma 7.1.1f 3 € R andé € RP are admissible and|3||>/v/n < [|0]|2//p then(3,6) is
admissible.

The iterative algorithm presented in Figlile 4 can be usedtbtfie partition7 = {J; :
¢ € Ni} and, so, the vectok(3) described in Theorefn 4.1. The algorithm processes the
components of vectags in a sequential manner. Initially, the first component fortims only
set in the partition. After the generic iteration- 1, where the partition is composed bkets,
the index of the next components,is put in a new sef,, ;. Two cases can occur: the means
of the squares of the sets are in strict descending orddnjotder is violated by the last set.
The latter is the only case that requires further actionheatgorithm merges the last two sets
and repeats until the sets in the partition are fully ordefédte that, since the only operation
performed by the algorithm is the merge of admissible setmmd 7.1 ensures that after each

" s “ s e 1815k |12 EBAVIE
stept the current partition satisfies the “stay within condlmng > N for every

¢ € Ny and every subset’ C J, formed by the firstc < |.J,| elements of/,. Moreover, the
while loop ensures that after each step the current partitiosfiestj for every € N, _4, the
“cross over” conditions| 3, |l2v/]Je] > 181,.,1124/1Je+1]. Thus, the output of the algorithm
is the partition.7 defined in Theorermn 4.1. In the actual implementation of tigerthm, the
means of squares of each set can be saved. This allows us putothe mean of squares of
a merged set as a weighted mean, which is a constant timetiogper&ince there are — 1
consecutive terms in total, this is also the maximum numbenerges that the algorithm can
perform. Each merge requires exactly one additional testyescan conclude that the running
time of the algorithm is linear.

8 Numerical simulations
In this section we present some numerical simulations Wettproposed method. For simplicity,

we consider data generated noiselessly fgom X 3%, wheres* € R is the true underlying
regression vector, andl is anm x 100 input matrix,m being the sample size. The elements
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Figure 5: Comparison between different penalty methodsB¢x vs. Lasso; (b,c) Wedge vs.
Hierarchical group Lasso; (d) Composite wedge. See texhfme information

of X are generated i.i.d. from the standard normal distribytma the columns ok are then
normalized such that theit, norm is1. Since we consider the noiseless case, we solve the
interpolation problemmin{(3) : y = X}, for different choices of the penalty functidh

In practice, [[1.R) is solved for a tiny value of the paramétarexample,p = 10~8, which we
found to be sufficient to ensure that the error terniinl(1.2)egligible at the minimum. All
experiments were repeatéd times, generating each time a new matkix In the figures we
report the average of the model error of the ve@tgarned by each method, as a function of the
sample sizen. The former is defined as MB) = E[||3 — *||2]. In the following, we discuss

a series of experiments, corresponding to different clsofoe the model vectop* and its
sparsity pattern. In all experiments, we solved the optatian problem((1.12) with the algorithm
presented in Sectidd 7. Whenever possible we solved [siBpyJing analytical formulas and
resorted to the solver CVXh{tp://cvxr.com/cvy/in the other cases. For example, in the case
of the wedge penalty, we found that the computational timéhefalgorithm in Figurél4 is
495, 603, 665, 869, 1175 faster than that of the solver CVX far = 100, 500, 1000, 2500, 5000,
respectively.

Box. In the first experiment the modelis-sparse, where each nonzero component, in arandom
position, is an integer uniformly sampled in the interjsal 0, 10]. We wish to show that the
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more accurate the prior information about the model is, theenprecise the estimate will be.
We use a box penalty (see Theorem| 3.1) constructed “arolnadimiodel, imagining that an
oracle tells us that each componé#it| is bounded within an interval. We consider three boxes
Bla, t] of different sizes, namely;, = (r — |5;|)+ andb; = (|5;| — r)+ and radiir = 5,1 and
0.1, which we denote as Box-A, Box-B and Box-C, respectively. dmpare these methods
with the Lasso — see Figuré 5-a. As expected, the three ba{tmenperform better. Moreover,
as the radius of a box diminishes, the amount of informatioou&the true model increases,
and the performance improves.

Wedge. In the second experiment, we consider a regression vectaysevcomponents are
nonincreasing in absolute value and only a few are nonzepecifically, we choose ao0-
sparse vector3: = 11— j, if j € Nyo and zero otherwise. We compare the Lasso, which makes
no use of such ordering information, with the wedge pen@lty|1V) (see Theorern 4.1) and
the hierarchical group Lasso in [21], which both make useughsnformation. For the group
Lasso we choos®(3) = >,y 1871, with J, = {£,£+1,...,100}, £ € Nyg. These two
methods are referred to as “Wedge” and “GL-lin” in Figufe,5dspectively. As expected both
methods improve over the Lasso, with “GL-lin” being the bekthe two. We further tested
the robustness of the methods, by adding two additionaler@nzomponents with value af

to the vector3* in a random position betwee®) and100. This result, reported in Figufe 5-c,
indicates that “GL-lin” is more sensitive to such a pertuidia

Composite wedgeNext we consider a more complex experiment, where the reigresector

is sparse within different contiguous regiahs . . ., P;o, and the/; norm on one region is larger
than the/; norm on the next region. We choose sBts= {10(i — 1) + 1,...,10i}, i € Ny
and generate é-sparse vectop* whosei-th nonzero element has valgeé — i (decreasing)
and is in a random position if;, for i € Ng. We encode this prior knowledge by choosing
Q(BIA) with A = {X € R : |Ap |1 > [[Ap., |1, @ € Ng}. This method constraints the sum
of the sets to be nonincreasing and may be interpreted asthgasition of the wedge set with
an average operation across the getsvhich may be computed using Proposition 2.3 . This
method, which is referred to as “C-Wedge” in Figlre 5-d, impared to the Lasso and to three
other versions of the group Lasso. The first is a standardograsso with the nonoverlapping
groupsJ; = P, 1 € Nyg, thus encouraging the presence of sets of zero elementshwhi
useful because there atesuch sets. The second is a variation of the hierarchicalpgt@sso
discussed above with; = U}OZZ-PJ-, 1 € Njp. A problem with these approaches is that the
norm is applied at the level of the individual séts which does not promote sparsity within
these sets. To counter this effect we can enforce contigumozero patterns within each of the
P;, as proposed by [12]. That is, we consider as the groups tsda@ened by all sequences
of ¢ € Ny consecutive elements at the beginning or at the end of eatiedfetsP;, for a
total of 180 groups. These three groupings will be referred to as “GL;if@L-hie™, “GL-
con” in Figure[5-d, respectively. This result indicates #uvantage of “C-Wedge” over the
other methods considered. In particular, the group Lasgbads fall behind our method and
the Lasso, with “GL-con” being slight better than “GL-indhé “GL-hie”. Notice also that
all group Lasso methods gradually diminish the model errdil they have a point for each
dimension, while our method and the Lasso have a steepegrteseaching zero at a number
of points which is less than half the number of dimensions.
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Figure 6: Penalt(3|W*), k = 1,...,4, used for several polynomial models:) degreel,
(b) degree2, (c) degrees; (d) degreet.

Polynomials The constraints on the finite differences (see equatid@#impose a structure
on the sparsity of the model. To further investigate thissgmbty we now consider some mod-
els whose absolute value belong to the sets of constraifitsvherek = 1, ..., 4. Specifically,
we evaluate the polynomialg(t) = —(t+5), p2(t) = (t+6)(t—2), p3(t) = —(t+6.5)t(t—1.5)
andp,(t) = (t+ 6.5)(t — 2.5)(t + 1)t at 100 equally spaced)(1) points starting from-7. We
take the positive part of each component and scale iDi®o that the results can be seen in
Figure[T. The roots of the polynomials has been chosen sdhbeatparsity of the models is
either18 or 19.

We solve the interpolation problem using our method with ple@alty Q(3|W*), k =
1,...,4, with the objective of testing the robustness of our meththd: constraint setV*
should be a more meaningful choice whén| is in it, but the exact knowledge of the degree is
not necessary. We see in Figurés 6 that this is indeed the‘d&de’ outperform the Lasso for
everyk, but among these methods the best one knows the degfgg.of

One important feature of these sparsity pattern is the nuwibeontiguous regionsti, 2,

2 and 3 respectively. As a way of testing the methods on a less datifsetting, we repeat
the experiment using the same sparsity patterns, but iaglaach nonzero component with a
uniformly sampled random number betweleand2. In Figure[8 we can see that, even if now
the models manifestly don’t belong %, we still have an advantage because the constraints
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(c) (d)

Figure 7: Silhouette of the polynomials by number of degfe¢® = 1, (b) k = 2, (¢) k = 3,
(d) k = 4.

look for a limited number of contiguous regions.

Finally, Figure9 displays the regression vector found lgylthsso and the vector learned
by “W-2" (left) and by the Lasso and “W-3” (right), in a singtan with sample size dt0 and
35, respectively. The estimated vectors (green) are supedposthe true vector (black). Our
method provides a better estimate than the Lasso in botls.case

9 Conclusion

We proposed a family of penalty functions that can be used ddainstructured sparsity in
linear regression. We provided theoretical, algorithnmd aomputational information about
this new class of penalty functions. Our theoretical obstgons highlight the generality of this
framework to model structured sparsity. An important feataf our approach is that it can
deal with richer model structures than current approachekewnaintaining convexity of the
penalty function. Our practical experience indicates thase penalties perform well numeri-
cally, improving over state of the art penalty methods fancure sparsity, suggesting that our
framework is promising for applications. In the future, ibwd be valuable to extend the ideas
presented here to learning nonlinear sparse regressiorlsaothere is also a need to clarify
the rate of convergence of the algorithm presented here.

The methods developed here can be extended in differertdtidings. We mention here
several possibilities. For example, for any 0, it readily follows that

p_; " g1 r
1812 mf{r+1 ZN: N 9.1)

7 n

wherep = 2r/(r + 1) and|| ||, is the usual?-norm onRR". This formula leads us to consider
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Figure 8: Penalty)(3|W*), k = 1,...,4, used for several polynomial models with random

values between the rootg:) degreel, (b) degree2, (c) degrees; (d) degreet.

the same optimization problem over a constraintAseilote that ifp — 0 the left hand side of
the above equation converges to the cardinality of the stippthe vectors.

Problems associated with multi-task learning demand matralogs of the results discussed
here. In this regard, we propose the following family of anily invariant norms onl x n
matrices. Let: = min(d,n) ando(B) € R* be the vector formed from the singular values of
B. WhenA is a nonempty convex set which is invariant under permutateur point of view
in this paper suggests the penalty

IBlla = Q(a(B)|A).

The fact that this is a norm, follows from the von Neumann abgarization of unitarily invariant
norms. Whem\ = R” , this norm reduces to the trace norm.

Finally, the ideas discussed in this paper can be used irotitext of multiple kernel learn-
ing. LetK,, ¢ € N,, be prescribed reproducing kernels on aXetand H, the corresponding
reproducing kernel Hilbert spaces with norfns||,. We consider the problem

2
min ¢ > (yi -y fg<xi)> —l—p92<(||fg||g e Nn)|A) . foe Hyl €N,

1€Nm, LeNy
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Figure 9: Lasso vs. penal(-|A) for Convex (left) and Cubic (Right); see text for more
information.

and note that the choice = R’ , correspond to multiple kernel learning.
All the above examples deserve a detailed analysis and we togprovide such in future
work.

Acknowledgements

We are grateful to A. Argyriou for valuable discussions,exsally concerning the proof of
Theoreni 711 and Theordm A.2 in the appendix. We also wishaoktiRaphael Hauser, Mark
Herbster, Alexandre Tsybakov and Yiming Ying for usefulagdissions. The work of the first
named author was supported by NSF Grant ITR-0312113 andideFGrant AFOSR-FA9550.
The work of the second and third authors were supported bYRERSrant EP/D071542/1.

A Appendix

In this appendix we describe in detail a result due to J.M.dRam which we use in the proof
of Proposition 2.11.

Definition A.1. Let f be a real-valued function defined on an open subSetf R” andu €
R™. The directional derivative of at x € X in the “direction” « is denoted by D, f)(z) and

is defined as
(D)) = lim LE 1) = /(@)

t—0 t

if the limit exists. When the limit is taken through nonnegavalues of, we denote the corre-
sponding right directional derivative bi;".

LetY be a compact metric spack,: X x Y — R a continuous function on its domain and
define the functiorf : X — Ratx € X as

f(z) =min{F(z,y) :y € Y}.
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We say thatF' is Danskin function if, for every, € R”, the functionF, : X x Y — R defined
at(z,y) € X xY asF!(z,y) = (D, F(-,y))(x)is continuous orX x Y. Our notation is meant
to convey the fact that the directional derivative is takelative to the first variable aof'.

Theorem A.1. If X is an open subset &"”, Y a is compact metric spacéd; : X x Y is a
Danskin functiony € R™ andx € X, then

(D f)(@) = min {F(z,y) -y € Yz}
whereY, := {y:y €Y, F(z,y) = f(2)}.
Proof. If x € X,y € Y, andu € R” then, for all positive, sufficiently small, we have that
F(z +tu,y) — F(x,y)

flo+tu) = f@) _ |
t - t

Lettingt — 0™, we get that

s 1210 = (&)

t—0t+ t

<min{F/(z,y):y € Y,}. (A.1)

Next, we choose a sequenfie : k£ € N} of positive numbers such thitn,_, ., ¢, = 0 and

o fet ) = f@) et = ()

k—so00 tr t—0t+ t

From the definition of the functiorf, there exists @, € Y such thatf(z + tyu) = F(z +
tru, yr). SinceY is a compact metric space, there is a subsequénge: ¢ € N} which
converges to somg,, € Y. It readily follows from our hypothesis that the functighis
continuous onX. Indeed, we have, for eveny, z, € X, that

|f(21) = f(22)| < max{|F(21,y) — F(z2,y)| :y €Y}
Hence we conclude that, € Y,. Moreover, we have that
F(x + tyu, y) — F(x, yr)

fle+tyu) = fla)
tr - tr '

By the mean value theorem, we conclude that there is positingbers, < ¢, such that the

flx+tyu) — f(x)
Ly

> F)(z + opu, Yi).

We let/ — oo and use the hypothesis thitis a Danskin function to conclude that

lim inf flo+tu) = J(z)

t—0+ t

> Fy(7,Yo0) > min {F(7,y) 1 y € Yo}
Combining this inequality witH (Al1) proves the result. [ |
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We note that/[2, p. 737] describes a result which is attridbtdeDanskin without reference.
This result differs from the result presented above. Thaltrés [2, p. 737] requires the hy-
pothesis of convexity on the functiafi. The theorem above and its proof is an adaptation of
Theorem 1 in[6].

We are now ready to present the proof of Propositioh 2.1.

Proof of Proposition[2.1The essential part of the proof is an application of Thedrefh Ao
apply this result, we start with & € (R\{0})" and introduce a neighborhood of this vector
defined as

2

wheref,;,, = min{|5;| : i € N,,}. Theorem_A.ll also requires us to specify a compact subset
Y (B) of R™. We construct this set in the following way. We choose a fixedl A and a positive
e > 0. From these constants we define the constants

(¥ = Y <(|ﬁz\+§imin/2)2 +X_))

S\

X(8) = {a ca €A, o — Bl < 5““},

2

O = T T

b(B) = max(a(B),c(8)+e).

With these definitions, we choose our compactsgt) to beY (5) = Ays)n5)- TO apply
TheoreniAlL, we use the fact, for anye X (3), that

Q(alA) = min{T(a, A) : A € Y(B)}. (A.2)

Let us, for the moment, assume the validity of this equatiwth proceed with the remainaing
details of the proof. As a consequence of this equation, welade that there exists a vector
A(B) suchthaf2(B|A) = T'(B8, A(B)). Moreover, wher8 € (R\{0})" the functionl's : R} | —
R, defined forA € R}, asI's(\) = I'(3, A) is strictly convex on its domain and s¥(/3) is
unique.

By construction, we know, for every € X (), that

O (PP EL R WG G

From this inequality we shall establish th¥t5) depends continuously of. To this end, we
choose any sequendg” : k € N} which converges t@ and from the above inequality we
conclude that the sequence of vectd(s”) is bounded. However this sequence can only have
one cluster point, namely(3), becausd’ is continuous. Specifically, ifim;_,., A\(3%) = A,
then, for every\ € A, it holds thafl'(5*, \(5%)) < I'(8*, ) and, passing to the limit(3, \) <
(8, \), implying thatA = A\(6).

Likewise, equation(Al2) yields the formula for the partildrivatives of2(-|A). Specifi-
cally, we identify F" and f in Theoreni A.1 withl" andQ2(-|A), respectively, and note that

o0, (ar or LB
6 —mm{ i - 0 =2

(B, : A€ A, T(3,\) = me)}
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Therefore, the proof will be completed after we have esshblil equatiori_(Al2). To this
end, we note that ih = (\; : i € N,,) € A\Y(B) then there existg € N,, such that either
Aj < a(B)orA; > b(B). Thus, we have, for every € X (/3), that

1 Oé? 1 : r2nin . 0(5)4—6 €
[(a, A) > 3 ()\_] +)\j) > 5 min <4a(ﬁ)’b<ﬁ>) =—75 > Q(a]A) + 3

This inequality yields equatiof (A.2). [ |

We end this appendix by extracting the essential featurdseafonvergence of the alternat-
ing algorithm as described in Section 7. We start with two paat setsX C R" andY C R™,
and a strictly convex functiof' : X xY — R. Corresponding té’ we introduce two additional
functions,f : X — R andg : Y — R defined, forevery € X,y € Y as

f(z) =min{F(z,y):y €Y}, gly)=min{F(z',y): 2" € X}.

Moreover, we introduce the mappings: Y — X and¢, : X — Y, defined, for every: € X,
yeyY,as

¢1(y) = argmin{F(z,y) : x € X},  ¢o(z) = argmin{F(z,y) :y € Y}
Lemma A.1. The mapping®; and ¢, are continuous on their respective domain.

Proof. We prove that, is continuous. The same argument appliegtoSuppose thafy*
k € N} is a sequence v which converges to some poigte Y. Then, sincel is jointly
strictly convex, the sequende; (v*) : k¥ € N} has only one cluster point i, namelyo, (y).
Indeed, if there is a subsequengg (y*¢); ¢ € N} which converges ta@, then by definition,
we have, for every € X, ¢ € N, that F(¢,(y*),y*) < F(x,y*). From this inequality it
follows thatF'(z,y) < F(z,y). Consequently, we conclude that ¢, (y). Finally, sinceX is
compact, we conclude that then,_,.. ¢1(y*) = ¢1(y). ]

As an immediate consequence of the lemma, we seefthatd g are continuous on their
respective domains, because, for everg X,y € Y, we have thaff () = F(x, ¢»(x)) and

9(y) = F(o1(y), )
We are now ready to define the alternating algorithm.

Definition A.2. Choose any), € int(Y) and, for everyt € N, define the iterates

ot = g1 (y* )

and
y* = o).

Theorem A.2. If F: X x Y — R satisfies the above hypotheses and it is differentiable ®n th
interior of its domain, and there are compact subsgtsC int(X), Yy C int(Y') such that, for

all k € N, (2%, y*) € X, x Y;, then the sequendgz*, y*) : k € N} converges to the unique
minimum off” on its domain.
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Proof. First, we define, for everys € N, the real numberg, = F(z*,y* 1) andy, =
F (2%, y*). We observe, for alt > 2, that

Vp < 0 < vy

Therefore, there exists a constansuch thalimy_.. 0, = lim,_, v, = . Suppose, there is
a subsequencgr® : ¢ € N} such thalim,_,., 2 = x. Thenlimy_,., ¢2(2%) = ¢o(z) =: .
Observe that,, = f(2*) andéd,,; = g(y*). Hence we conclude that

SinceF is differentiable(z, y) is a stationary point of" in int(X) x int(Y’). Moreover, since
F is strictly convex, it has a unique stationary point whickws at its global minimum. =
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